508 research outputs found

    Predicting radio emission from the newborn hot Jupiter V830 Tau and its host star

    Full text link
    Magnetised exoplanets are expected to emit at radio frequencies analogously to the radio auroral emission of Earth and Jupiter. We predict the radio emission from V830 Tau b, the youngest (2 Myr) detected exoplanet to date. We model the host star wind using 3DMHD simulations that take into account its surface magnetism. With this, we constrain the local conditions around V830 Tau b that we use to then compute its radio emission. We estimate average radio flux densities of 6 to 24mJy, depending on the assumed radius of the planet (one or two Rjupiter). These radio fluxes are present peaks that are up to twice the average values. We show here that these fluxes are weakly dependent (a factor of 1.8) on the assumed polar planetary magnetic field (10 to 100G), opposed to the maximum frequency of the emission, which ranges from 18 to 240MHz. We also estimate the thermal radio emission from the stellar wind. By comparing our results with VLA and VLBA observations of the system, we constrain the stellar mass-loss rate to be <3e-9 Msun/yr, with likely values between ~1e-12 and 1e-10 Msun/yr. The frequency-dependent extension of the radio-emitting wind is around ~ 3 to 30 Rstar for frequencies in the range of 275 to 50MHz, implying that V830 Tau b, at an orbital distance of 6.1 Rstar, could be embedded in the regions of the host star's wind that are optically thick to radio wavelengths, but not deeply so. Planetary emission can only propagate in the stellar wind plasma if the frequency of the cyclotron emission exceeds the stellar wind plasma frequency. For that, we find that for planetary radio emission to propagate through the host star wind, planetary magnetic field strengths larger than ~1.3 to 13 G are required. The V830 Tau system is a very interesting system for conducting radio observations from both the perspective of radio emission from the planet as well as from the host star's wind.Comment: A&A, in pres

    Learning about Quantum Gravity with a Couple of Nodes

    Full text link
    Loop Quantum Gravity provides a natural truncation of the infinite degrees of freedom of gravity, obtained by studying the theory on a given finite graph. We review this procedure and we present the construction of the canonical theory on a simple graph, formed by only two nodes. We review the U(N) framework, which provides a powerful tool for the canonical study of this model, and a formulation of the system based on spinors. We consider also the covariant theory, which permits to derive the model from a more complex formulation, paying special attention to the cosmological interpretation of the theory

    On the environment surrounding close-in exoplanets

    Get PDF
    Exoplanets in extremely close-in orbits are immersed in a local interplanetary medium (i.e., the stellar wind) much denser than the local conditions encountered around the solar system planets. The environment surrounding these exoplanets also differs in terms of dynamics (slower stellar winds, but higher Keplerian velocities) and ambient magnetic fields (likely higher for host stars more active than the Sun). Here, we quantitatively investigate the nature of the interplanetary media surrounding the hot Jupiters HD46375b, HD73256b, HD102195b, HD130322b, HD179949b. We simulate the three-dimensional winds of their host stars, in which we directly incorporate their observed surface magnetic fields. With that, we derive mass-loss rates (1.9 to 8.0 ×1013M\times 10^{-13} M_{\odot}/yr) and the wind properties at the position of the hot-Jupiters' orbits (temperature, velocity, magnetic field intensity and pressure). We show that these exoplanets' orbits are super-magnetosonic, indicating that bow shocks are formed surrounding these planets. Assuming planetary magnetic fields similar to Jupiter's, we estimate planetary magnetospheric sizes of 4.1 to 5.6 planetary radii. We also derive the exoplanetary radio emission released in the dissipation of the stellar wind energy. We find radio fluxes ranging from 0.02 to 0.13 mJy, which are challenging to be observed with present-day technology, but could be detectable with future higher sensitivity arrays (e.g., SKA). Radio emission from systems having closer hot-Jupiters, such as from tau Boo b or HD189733b, or from nearby planetary systems orbiting young stars, are likely to have higher radio fluxes, presenting better prospects for detecting exoplanetary radio emission.Comment: 15 pages, 5 figures, accepted to MNRA

    A mixed latent class Markov approach for estimating labour market mobility with multiple indicators and retrospective interrogation

    Get PDF
    Measurement errors can induce bias in the estimation of transitions, leading to erroneous conclusions about labour market dynamics. Traditional literature on gross flows estimation is based on the assumption that measurement errors are uncorrelated over time. This assumption is not realistic in many contexts, because of survey design and data collection strategies. In this work, we use a model-based approach to correct observed gross flows from classification errors with latent class Markov models. We refer to data collected with the Italian Continuous Labour Force Survey, which is cross-sectional, quarterly, with a 2-2-2 rotating design. The questionnaire allows us to use multiple indicators of labour force conditions for each quarter: two collected in the first interview, and a third collected one year later. Our approach provides a method to estimate labour market mobility, taking into account correlated errors and the rotating design of the survey. The best-fitting model is a mixed latent class Markov model with covariates affecting latent transitions and correlated errors among indicators; the mixture components are of mover-stayer type. The better fit of the mixture specification is due to more accurately estimated latent transitions

    How can weedy rice stand against abiotic stresses? a review

    Get PDF
    Weedy rice is one of the most common weeds in rice cultivation in many rice areas throughout the world and it is able to cause significant yield reductions. Weedy rice is characterized by a high biological diversity that permits different populations to be identified on the basis of their morphological and physiological traits. This variability contributes to its success in different environments and allows different abiotic stresses, which are intensified by climate change, to be faced. Taller plants, enhanced tillering, seed shattering and the presence of red pericarp, variable hull coloration and awn morphology, linked to a deeper seed dormancy, are some of the traits that help weedy rice to spread in changing environments. The higher phenotypic plasticity and genetic variability of weedy rice make it more able to cope with temperature variations, intermittent water availability, soil salinity, drought conditions and increased CO2 concentrations than cultivated rice. As these abiotic stresses will become more frequent in the future, weedy rice competitiveness may be higher, with a spread of infestations. Thus, the control of weedy rice should be based on an integration of different preventive and agronomic techniques, a sensible use of herbicides and the use of suitable rice varieties

    M-dwarf stellar winds: the effects of realistic magnetic geometry on rotational evolution and planets

    Get PDF
    We perform three-dimensional numerical simulations of stellar winds of early-M dwarf stars. Our simulations incorporate observationally reconstructed large-scale surface magnetic maps, suggesting that the complexity of the magnetic field can play an important role in the angular momentum evolution of the star, possibly explaining the large distribution of periods in field dM stars, as reported in recent works. In spite of the diversity of the magnetic field topologies among the stars in our sample, we find that stellar wind flowing near the (rotational) equatorial plane carries most of the stellar angular momentum, but there is no preferred colatitude contributing to mass loss, as the mass flux is maximum at different colatitudes for different stars. We find that more non-axisymmetric magnetic fields result in more asymmetric mass fluxes and wind total pressures ptotp_{\rm tot} (defined as the sum of thermal, magnetic and ram pressures). Because planetary magnetospheric sizes are set by pressure equilibrium between the planet's magnetic field and ptotp_{\rm tot}, variations of up to a factor of 33 in ptotp_{\rm tot} (as found in the case of a planet orbiting at several stellar radii away from the star) lead to variations in magnetospheric radii of about 20 percent along the planetary orbital path. In analogy to the flux of cosmic rays that impact the Earth, which is inversely modulated with the non-axisymmetric component of the total open solar magnetic flux, we conclude that planets orbiting M dwarf stars like DT~Vir, DS~Leo and GJ~182, which have significant non-axisymmetric field components, should be the more efficiently shielded from galactic cosmic rays, even if the planets lack a protective thick atmosphere/large magnetosphere of their own.Comment: 16 pages, 9 figures, to appear in MNRA

    Star-planet magnetic interaction and activity in late-type stars with close-in planets

    Full text link
    Late-type stars interact with their close-in planets through their coronal magnetic fields. We introduce a theory for the interaction between the stellar and planetary fields focussing on the processes that release magnetic energy in the stellar coronae. We consider the energy dissipated by the reconnection between the stellar and planetary magnetic fields as well as that made available by the modulation of the magnetic helicity of the coronal field produced by the orbital motion of the planet. We estimate the powers released by both processes in the case of axisymmetric and non-axisymmetric, linear and non-linear force-free coronal fields finding that they scale as v_r (B_s)^(4/3) (B_p)^(2/3) (R_p)^2, where v_r is the relative velocity between the stellar and planetary fields, B_s the mean stellar surface field, B_p the planetary field at the poles, and R_p the radius of the planet. A chromospheric hot spot or a flaring activity phased to the orbital motion of the planet are found only when the stellar field is axisymmetric. In the case of a non-axisymmetric field, the time modulation of the energy release is multiperiodic and can be easily confused with the intrinsic stellar variability. We apply our theory to the systems with some reported evidence of star-planet magnetic interaction finding a dissipated power at least one order of magnitude smaller than that emitted by the chromospheric hot spots. The phase lags between the planets and the hot spots are reproduced by our models in all the cases except for upsilon And. In conclusion, the chromospheric hot spots rotating in phase with the planets cannot be explained by the energy dissipation produced by the interaction between stellar and planetary fields as considered by our models and require a different mechanism.Comment: 16 pages, 3 figures, accepted by Astronomy and Astrophysic
    corecore